Автономная некоммерческая организация высшего образования Самарский университет государственного управления «МЕЖДУНАРОДНЫЙ ИНСТИТУТ РЫПКА»

Кафедра прикладной математики и экономогрики

УТВЕРЖДАЮ И.ф. проректора по учебной работс

2021 г.

Долгова И.А.

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ (тестирование) ПО ПРИКЛАДОЙ МАТЕМАТИКЕ

для поступающих па базе среднего профессионального образования

Программа рассмотрена и одобрена на заседании кафедры прикладной математики и экономстрики

«20» октября 2021 года (протоко, і № 3)

Зав. кафедрой

С.П. Перов

г. Самара 2021 г.

І. Пояснительная записка

Программа вступительных испытаний сформирована на основе федеральных государственных стандартов среднего профессионального образования, содержания примерных образовательных математических дисциплин ИЗ программ среднего профессионального образования. Программа включает в себя разделы следующих дисциплин – математика, элементы высшей математики, теория вероятностей и математическая статистика, статистка. Вступительное испытание проводится в форме тестирования.

II. Содержание программы по прикладной математике

Математика

Преобразование алгебраических выражений. Уметь: использовать приобретенные знания и умения в практической деятельности и повседневной жизни; проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции; вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования.

Основы тригонометрии. Уметь: применять основные тригонометрические тождества и формулы тригонометрии для вычисления значений тригонометрических функций

Числа, корни и степени. Логарифм. Уметь: находить значения корня натуральной степени, степени с рациональным показателем; использовать определение и свойства логарифма при нахождении значения логарифма.

Определение и график функции. Свойства функций. Исследование функции. Уметь: находить области определения и области значения функции; описывать по графику поведение и свойства функции;

Определение и график функции. Свойства функций. Уметь: описывать по графику поведение и свойства функции; исследовать функции на монотонность, четность и периодичность; находить по графику точки экстремума и наибольшее и наименьшее значения функции, знать основные элементарные функции; вычислять значение функции по значению аргумента; определять положение точки на графике по ее координатам и наоборот.

Уравнения и системы уравнений. Уметь: решать квадратные, рациональные, иррациональные, показательные, тригонометрические и логарифмические уравнения; использовать для приближенного решения уравнений графический метод. Составлять уравнения и системы уравнений по условию задачи.

Неравенства и системы неравенств. Уметь: решать квадратные, рациональные, показательные и логарифмические неравенства, их системы; использовать графический метод для приближенного решения неравенств

Производная. Уметь: вычислять производные элементарных функций; составлять уравнение касательной к графику функции; вычислять скорость и ускорение для процесса, заданного формулой или графиком; находить экстремумы, наибольшие и наименьшие значения функций.

Первообразная и интеграл. Уметь: вычислять первообразные элементарных функций

Измерение геометрических величин. Уметь: решать планиметрические задачи на нахождение геометрических величин (длин, углов, площадей); решать простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов); использовать при решении стереометрических задач планиметрические факты и методы; моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий; решать практические задачи, связанные с нахождением геометрических величин.

Элементы теории вероятностей. Уметь: вычислять вероятности событий с

использованием классического определения вероятностей; моделировать реальные ситуации на языке теории вероятностей и статистики, вычислять вероятности событий с применением вероятностных методов

Элементы статистики. Уметь: анализировать реальные числовые данные, представленные в виде диаграмм, графиков, таблиц; анализировать информацию статистического характера; решать практические задачи на обработку числовых данных.

Элементы высшей математики

Основы линейной алгебры и аналитической геометрии. Матрицы и определители. Системы линейных уравнений. Скалярное произведение векторов.

Элементы математического анализа. Предел функции в точке. Правила дифференцирования. Производная сложной функции. Производная функции в точке. Экстремум функции.

Элементы интегрального исчисления. Неопределенный интеграл. Определенный интеграл. Формула Ньютона-Лейбница. Методы вычисления неопределенных интегралов. Геометрические и физические приложения определенного интеграла. Свойства определенного интеграла. Дифференциальные уравнения с разделяющимися переменными. Числовые ряды.

Теория вероятностей и математическая статистика

Элементы комбинаторики. Определения вероятностей. Теоремы сложения и умножения вероятностей. Закон распределения вероятностей одномерной дискретной случайной величины. Числовые характеристики дискретных случайных величин.

Вариационный ряд. Полигон и гистограмма. Характеристики вариационного ряда Основные понятия об оценках параметров распределения. Точечная оценка математического ожидания и дисперсии. Линейная корреляция.

Функция распределения вероятностей дискретной случайной величины. Нормальное распределения. Эмпирическая функция распределения. Корреляционный анализ и статистические гипотезы.

Статистика

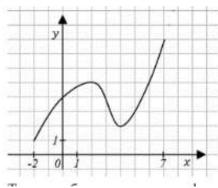
Предмет, метод и задачи статистики. Понятие статистического наблюдения, этапы проведения и программно-методологические вопросы статистического наблюдения. Формы, виды и способы организации статистического наблюдения; оценка точности статистического наблюдения. Статистическая сводка. Метод группировок в статистике. Статистические таблицы. Графическое изображение статистических данных.

Абсолютные величины. Относительные величины. Средние величины в статистике. Показатели вариации в статистике. Виды, показатели рядов динамики и их средние величины. Индексы и их использование в экономико-статистическом исследовании

III. Тест для поступающих на базе среднего профессионального или высшего образования

Тест состоит из 13 заданий базовой и повышенной сложности. В бланк ответов для заданий 3, 4, 5, 6, 9 заносят номер верного ответа; для заданий 1, 2, 7, 8, 10, 12, 13 в бланк ответов вносят число (целое или конечную десятичную дробь) - результат решения задачи; для задания 11 вносится четырехзначное число в порядке соответствия ответов исходным данным.

Использовались методические материалы и демоверсии педагогических измерительных материалов для дисциплин СПО НИИ мониторинга качества образования (https://fepo.iexam.ru/fgos_pim_struct).


Образцы заданий

№1 (введите ответ)

Если функция имеет вид $f(x) = x^3 + 2x + 7$, то f'(-1) принимает значение, равное ...

№2 (введите ответ)

График функции y(x), определенной на отрезке [-2;7] изображен на рисунке.

Тогда наименьшее значение функции равно ...

Ответ:

№3 (введите ответ)

Работникам малого предприятия установили оклады и представили результаты (в тыс. руб.) в таблице:

	Варианты			
	50	60	70	80
Кратность	10	2	6	2

Тогда средний оклад (среднее арифметическое значений) работника этого предприятия равен...

Ответ:

№4 (выбрать один правильный ответ)

В ходе испытаний гоночного автомобиля, движущегося прямолинейно, скорость менялась по закону $v(t)=4t^3-2t$. Ускорение в момент времени t=2 равно

Варианты ответов: а) 28

б) 12

в) 45

г) 46

Критерии оценивания тестового задания по прикладной математике

Результаты решения вписываются в Бланк ответов. Тест состоит из 13 заданий базовой и повышенной сложности.

Первичные баллы теста по прикладной математике

№ задания	Первичный балл
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	2
9	2
10	3
11	2
12	4
13	3

Тестовое задание оценивается по 100-балльной системе. Максимальное число первичных баллов 23. Сумма первичных баллов, набранных поступающим по заданиям, умножается на коэффициент 4,348. В результате выставляется итоговый тестовый балл.

Для успешного прохождения вступительного испытания по математике поступающему на базе среднего профессионального образования необходимо набрать не менее 34 тестовых баллов.

Программу составила - доцент кафедры прикладной математики и эконометрики Коваленко Татьяна Дмитриевна

АНО ВО Университет «МИР»

Бланк ответа на тест вступительного испытания по прикладной математике

Ф.И.О		
Шифр	Дата	
Шифр		

№ задания	Ответ
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	а) б) в)